On the Jarzynski relation for dissipative quantum

dynamics

Gavin E. Crooks

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720

E-mail: gecrooks@lbl.gov

Abstract. In this note, we will discuss how to compactly express the Jarzynski
identity for an open quantum system with dissipative dynamics. In quantum
dynamics we must avoid explicitly measuring the work directly, which is
tantamount to continuously monitoring the state of the system, and instead
measure the heat flow from the environment. These measurements can be
concisely represented with Hermitian map superoperators, which provide a
convenient and compact representations of correlation functions and sequential
measurements of quantum systems.
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1. Introduction

When a classical system in thermal equilibrium is driven from that equilibrium by an
external perturbation, then the work of that process is related to the system’s free
energy change by Jarzynski’s equality [1, 2, 3, 4].

(e7PW) = /p(W) e PV AW = e PAF, (1)

Here, p(W) is the probability distribution of work W done on the system, § = 1/kgT
is the inverse temperature T of the environment in natural units, (kg is the Boltzmann
constant) and AF is the Helmholtz free energy change of the system. In other words,
a Boltzmann weighted average of the irreversible work recovers the equilibrium free
energy difference from an out-of-equilibrium transformation.

The generalization of the Jarzynski identity to closed system quantum dynamics
is technically straightforward [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The
system is initially in thermal equilibrium with the environment, but is decoupled and
isolated from the environment during the perturbation of the system. The work is
then the difference in energy of the system between the beginning and end of the
experiment. However, for an system that can interact with the environment this does
not suffice, since the total change in energy of the system AFE = Q + W is equal to the
work W applied via the time dependent perturbation plus the flow of heat @ from the
environment. Unlike a classical system, we cannot continuously measure the energy
of the system without severely disturbing the dynamics of the system.

Our solution to this problem is to realize that although we cannot continuously
measure the work or system energy, we can measure the heat flow from the
environment [9] without directly measuring the energy eigenstate of the system. If we
assume that the environment is large, rapidly decoheres and always remains at thermal
equilibrium, uncorrelated and unentangled with the system, then we can measure the
change in energy of the bath (i.e. —Q) without further disturbing the dynamics of the
system. Essentially, we reexpress the open-system quantum Jarzynski identity as

(e79WY = (e=BEs HBREHPB:Y — o~ FAF ()

In this note we will discuss how to represent the measurement of heat flow and
the quantum Jarzynski identity using a quantum Markov dynamics to describe the
system, and Hermitian maps, generalized measurement superoperators, to represent
the measurements of heat flow.

2. Background: Quantum Dynamics of Open Systems

We are interested in the dynamics of a quantum system with a time dependent
Hamiltonian, weakly coupled to an extended, thermal environment. Let the total
Hamiltonian of the combined system be

H=Ht)®I®+1°® H® + eH™, (3)
where IS and IP are system and bath identity operators, HS is the time dependent
Hamiltonian of the system, HP is the bath Hamiltonian, H™ is the bath-system
interaction Hamiltonian and e is a small coupling constant.

If the system Hamiltonian is time-independent, the environment is in thermal
equilibrium, and in the limit that the the coupling constant is small, but the
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dimensionality of the environment is large, then the system relaxes to a mixed state
describe by the equilibrium density matrix [20, 21]
7ﬁHS 7,BHS
cd g € e € — eﬁFfﬁHS (4)
tre—BH® Z ’

where Z = trexp(—BH®) is the partition function and F = —% In Z is the Helmholtz
free energy of the system.

If we further assume that the environment rapidly decoheres with a characteristic
relaxation time short compared with the relevant bath-system interactions, then the
environment remains very near thermal equilibrium, unentangled and uncorrelated
with the system, irrespective of any perturbation applied to the system. Consequently,
the system dynamics can be described by a quantum Markov chain [22, 23, 21]

pt)=8St—-1,t)---S(s+1,54+2)S(s,s+ 1) p(s) (5)

where each S is a quantum operation p’ = Sp, a linear, trace preserving, completely
positive map of operators [24, 25, 26, 27]. Any such completely positive superoperator
has operator-sum representations,

SpEZflapAiy . (6)

Conversely, any operator-sum represents a completely positive superoperator. The
collection {A,} are known as Kraus operators. The superoperator is trace preserving,
and therefore conserves probability, if > Al A, = I, where I is the identity operator.
In the simplest case, the dynamics of a isolated quantum system is described by a single
unitary operator Ut = U1,

We can derive a quantum operator description of the system dynamics by
following the unitary dynamics of the combined total system for a finite time and then
measuring the final state of the environment. We assume that initially the system and
environment are uncorrelated and that the initial combined state is p° ® pf’q, where
p?q is the thermal equilibrium density matrix of the bath.

S(s,t)p°® = trg U[p® @ p"|UT (7)
-BE?
= U <ps Cf hyp— ) Utlbs)
7

> 7B |bi) (bi
o—BE?
= Z 7<bf|U|bi> p° (bs| U [bf)
if

%

Here, U is the unitary evolution operator of the total system

U= Texp <—; /:H(T) dT) , (8)

where 7 is the time-ordering operator, trg is a partial trace over the bath degrees
of freedom, {EP} are the energy eigenvalues and {|b;)} are the orthonormal energy
eigenvectors of the bath, and ZB is the bath partition function. For simplicity, and
without loss of generality, we assume that the bath energy states are non-degenerate.

It follows from the last line of Eq. (7) that the Kraus operators for this dynamics

are
1 B

e 3BE;

Ay= "
J /ZB

(b;|U1b;) (9)
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In the limit of small time interval we obtain a continuous time quantum Markovian
dynamics,

o =T e [ t £(r)dr ) pls) (10)

where £ is the Lindbladian superoperator [23, 22, 27].

3. Hermitian Maps and Sequential Measurements

If we describe the system dynamics using quantum operations, then it proves
very convenient to describe measurements using superoperator Hermitian maps. A
measurement of a quantum system can be characterized by a collection of measurement
operators { A, }, where > Al A, = I, and associated real valued measurement results,
an. For example, the Hermitian operator H = H' of a standard von Neumann
measurement can be decomposed into a collection of eigenvalues h and orthonormal
projection operators Py, such that H = ), hP,. More generally, the measurement
operators of a POVM (Positive Operator Valued Measure) need not be projectors nor
orthonormal [27].
The probability of observing the ath outcome is

Pa = tr AgpAl (11)
and the state of the system after this particular interaction is
AgpAl
[ = —Ple (12)
tr AgpAd

The overall effect of the dynamics, averaging over different interactions, is a quantum
operation, Eq. (6).

Rather than simply representing the effect of the measurement with the
appropriate quantum operation, we can represent the effect and result of the
measurement using a Hermitian map superoperator A :

Ap = Z Ao AapAl (13)

Note that this operator-value-sum cannot, in general, be recast as an operator-sum,
since the measurement values {a,} may be negative. An operator-value-sum maps
Hermitian operators to Hermitian operators (H = HT) ,

[AH]' = aaAaHAL) = AH" = AH . (14)

Conversely, any Hermitian map has an operator-value-sum representation [28].

Hermitian maps provide a particularly compact and convenient representation
of sequential measurements and correlation functions. Let the Hermitian map A
representing a measurement at time 0, B a different measurement of the same system
at time ¢, and the quantum operation Sy represent the system evolution between these
two measurements. The expectation value of a single measurement is

(a) =tr Ap = Z o tr A pAl = Zp(a)aa (15)
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and the correlation function (b(¢)a(0)) can be expressed as
(b(t)a(0)) = tr BS;Ap(0)

= Zaabﬁ tr Bﬁ [St[Aap(O)AZcH B,L
af

=" pla, Baabs (16)
af
Note that expressions such as tr ABp, where A and B are Hermitian operators,
often appear in perturbation expansions and are frequently referred to as quantum
correlation functions. However, since AB is not in general Hermitian these expressions
do not directly represent a physical measurement.

Here we establish that, just as every Hermitian operator represents some
measurement on the Hilbert space of pure states, every Hermitian map can be
associated with some measurement on the Liouville space of mixed states. Suppose
that we have already decomposed the Hermitian map A4 into a operator-value-
sum with values {a,} and operators {A,}. Probability conservation requires that
Y e Al A, = I. If this condition is not met we can supplement the Kraus operators
with an additional operator whose corresponding measurement value is zero. Note
that Al A, is a positive operator and consequently BfB = I — %Za Al A, is also a
positive operator provided that c is a real number larger than the largest eigenvalue
of Y°, Al A,. Therefore, we can rescale the measurement outcomes {ca,} and Kraus
operators {%}, append the additional operator B with measurement outcome 0, and
associate the superoperator A with the measurement

A, Al

Vel Ve

Note that the decomposition of a Hermitian map into an operator-value-sum
representation is not unique [27, 28].

Ap=0BpB'+ " ca, (17)

4. Measurements of Heat Flow

We can now construct a Hermitian map representation of heat flow, under the
assumptions that the bath and system Hamiltonians are constant during the
measurement procedure and that the system dynamics can be described by a quantum
Markov dynamics. We construct a measurement on the total system and then project
out the bath degrees of freedom, leaving a Hermitian map superoperator that acts on
the system density matrix alone.

The full, explicit measurement is

h g f e d c b
AN A ~ =
(") = 3" e PEIED g trg [IS@ |bp)(bgl] U 15 @ [bi) (bi]] -
if
a b c d

—— ——— —~
PP @pe] - P @b bl UT 15 @ [by) by ]

We start with a composite system consisting of the bath, initially in thermal
equilibrium, weakly coupled to the system (a). We measure the initial energy
eigenstate of the bath (b), allow the system and bath to evolve together for some
time (c), and then measure the final energy eigenstate of the bath (d). The trace over

~~
Ut
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the bath degrees of freedom (e) yields the final, unnormalized system density matrix,
whose trace in turn (f) gives the probability of observing the given initial and final
bath energy eigenstates. We then multiple by the Boltzmann weighted heat (g) and
sum over all initial and final bath states (h) to obtain the desired average Boltzmann
weighted heat flow.

The sum over initial states can be split into separate sums on the left and right
projectors, since the bath is initially diagonal. Similarly, the sum over the final states
can be split into separate sums on the right and left due to the final trace over bath
degrees of freedom. As a consequence, we can rewrite the previous expression using
the bath Hamiltonian.

=trgtrp[S @ e T IU IS @et 3] [Sepl] - [Pect iUt [Sge 1]
Since the total Hamiltonian commutes with the unitary dynamics, and is time
independent over the time interval under consideration, we can write

U= e+§HUe_§H .
Furthermore, since ee? = exp{A+ B + 3[4, B] -}

[IS ® engB]e+gH _ [e+§HS+o(e) ® IB}

Therefore, in the small coupling limit ¢ — 0 the heat flow measurement is
approximately

~trgtrplet 2 @ BU e 7 @ 18] - [P @pB] - (e 7 @ B Ut 77 @ 17

with errors of order e. Taking the limit of small coupling constant does not represent
an additional constraint, since we already require that the system-bath coupling be
small in order to justify a quantum Markov chain dynamic, Egs. (5) and (10).

We now collect terms acting on the bath or system alone

= trg et H® [trB U [[e_gHS 0> e_gHS] ® pgq} UT}e"’gHS

and recover the Kraus operators {A;;} describing the reduced dynamics of the system,
Eq. (9).

8y _Bpys 8 s _8yS
= trg E etzH A e SH” S etz A;[je o H
ij

Finally, we have found that the average Boltzmann weighted heat flow can be
represented by

(etP9) = tr R™ISR p° (18)

where S is the reduced dynamics of the system and the Hermitian map measurement
superoperator R is

Rp:e_gHs pe_gHS (19)

The paired Hermitian map superoperators act at the beginning and end of a time
interval and measure the change in system energy during that interval. This does not

disturb the system beyond the disturbance already induced by coupling the system to
the environment.



On the Jarzynski relation for dissipative quantum dynamics 7
5. Quantum Jarzynski Identity

We are now in a position to derive the quantum Jarzynski identity [Eq. (2)] using
Hermitian maps and the quantum operator formalism. We split the total experimental
time into 7 intervals, labeled by the integer ¢t. The system Hamiltonian is fixed within
each time interval, and only changes in discrete jumps at the interval boundaries [2].
We can therefore measure the heat flow by wrapping the superoperator time evolution
of each time interval &; with the corresponding Hermitian map measurements
Ry 'S, R;. Similarly, we can represent the measurement of the Boltzmann weighted
change in energy of the system with

<e_5AE> = tr R, SRy 'p
= > PEED (518 ([si) (sillsid il ) Is )

if

The initial energy measurement does not disturb the system, nor influence subsequent
measurements of the heat flow, since the system begins at thermal equilibrium with
a density matrix diagonal in the energy eigenbasis. The final energy measurement
projects the system into an energy eigenstate of the final Hamiltonian, but this does
not influence the preceding heat flow measurements.

The average Boltzmann weighted work of a driven, dissipative quantum system
can therefore be compactly expressed as

(e7"Wy =tr [R, <H[Rt_18th]> Rg ' po] (20)

t

where p{? is the system equilibrium density matrix with system Hamiltonian H}.
Due to the structure of the energy change Hermitian maps R [Eq. (19)] and the

equilibrium density matrix [Eq. (4)] this product of superoperators telescopes, leaving

only the free energy difference between the initial and final equilibrium ensembles.

(™) = [Re[R;IE RS-+ [Ry ' SRa)[Ry ' S1 R RG]

=t [ReR-SRy] - [Ry ' S2Rs) [RII&RJ%]
=tr [RT [R;lSTRT] - [R2—152R2]R1—181p613ng(1)§]
Z(1)

= tr [R[R; 'S, R [R;Sﬂzm;lpiqT))]
Z(7)
= = —BAF
7(0) exp{—BAF}
We can recover a continuous time description by taking the limit where the time
intervals and jumps are infinitesimally small. In this we can express the quantum

Jarzynski identity in the continuous time Llindblad form.

e PN = ¢ ex ’ -1 —1,eq
(W) = wR(1) p{ /O R(t) E(t)R(t)dt}R(O) P

= PAF (21)
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